Parameter Sharing Deep Deterministic Policy Gradient for Cooperative Multi-agent Reinforcement Learning

نویسندگان

  • Xiangxiang Chu
  • Hangjun Ye
چکیده

Deep reinforcement learning for multi-agent cooperation and competition has been a hot topic recently. This paper focuses on cooperative multi-agent problem based on actor-critic methods under local observations settings. Multi agent deep deterministic policy gradient obtained state of art results for some multi-agent games, whereas, it cannot scale well with growing amount of agents. In order to boost scalability, we propose a parameter sharing deterministic policy gradient method with three variants based on neural networks, including actor-critic sharing, actor sharing and actor sharing with partially shared critic. Benchmarks from rllab show that the proposed method has advantages in learning speed and memory efficiency, well scales with growing amount of agents, and moreover, it can make full use of reward sharing and exchangeability if possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperative Multi-agent Control Using Deep Reinforcement Learning

This work considers the problem of learning cooperative policies in complex, partially observable domains without explicit communication. We extend three classes of single-agent deep reinforcement learning algorithms based on policy gradient, temporal-difference error, and actor-critic methods to cooperative multi-agent systems. We introduce a set of cooperative control tasks that includes task...

متن کامل

Deep Reinforcement Learning with Surrogate Agent-Environment Interface

In this paper we propose surrogate agent-environment interface (SAEI) in reinforcement learning. We also state that learning based on probability surrogate agent-environment interface gives optimal policy of task agent-environment interface. We introduce surrogate probability action and develope the probability surrogate action deterministic policy gradient (PSADPG) algorithm based on SAEI. Thi...

متن کامل

Learning with Opponent-Learning Awareness

Multi-agent settings are quickly gathering importance in machine learning. Beyond a plethora of recent work on deep multi-agent reinforcement learning, hierarchical reinforcement learning, generative adversarial networks and decentralized optimization can all be seen as instances of this setting. However, the presence of multiple learning agents in these settings renders the training problem no...

متن کامل

Lenient Multi-Agent Deep Reinforcement Learning

Much of the success of single agent deep reinforcement learning (DRL) in recent years can be attributed to the use of experience replay memories (ERM), which allow Deep Q-Networks (DQNs) to be trained efficiently through sampling stored state transitions. However, care is required when using ERMs for multi-agent deep reinforcement learning (MA-DRL), as stored transitions can become outdated bec...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.00336  شماره 

صفحات  -

تاریخ انتشار 2017